

Assembly Language Program Development tools
The following tools are required for developing and executing Assembly Level Language Programs:

1. Editor

2. Assembler

3. Linker

4. Debugger

Editor

An editor is a program, which allows you to create a file containing the assembly language statements for your program. As you type in your program, the editor stores the ASCII codes for the letters and numbers in successive RAM locations. When you have typed in all of your programs, you then save the file on a floppy of hard disk. This file is called source file. The next step is to process the source file with an assembler. In the MASM assembler, you should give your source file name the extension, .ASM

Assembler

An assembler program is used to translate the assembly language mnemonics for instructions to the corresponding binary codes. When you run the assembler, it reads the source file of your program the disk, where you saved it after editing on the first pass through the source program the assembler determines the displacement of named data items, the offset of labels and puts this information in a symbol table. On the second pass through the source program, the assembler produces the binary code for each instruction and inserts the offset etc that is calculated during the first pass. The assembler generates two files on floppy or hard disk. The first file called the object file is given the extension. OBJ. The object file contains the binary codes for the instructions and information about the addresses of the instructions. The second file generated by the assembler is called assembler list file. The list file contains your assembly language statements, the binary codes for each instructions and the offset for each instruction. In MASM assembler, MASM source file name ASM is used to assemble the file. Edit source file name LST is used to view the list file, which is generated, when you assemble the file.

Linker

A linker is a program used to join several object files into one large object file and convert to an exe file. The linker produces a link file, which contains the binary codes for all the combined modules. The linker however doesn’t assign absolute addresses to the program, it assigns is said to be relocatable because it can be put anywhere in memory to be run. In MASM, MLINK source filename is used to link the file.

Debugger

A debugger is a program which allows you to load your object code program into system memory, execute the program and troubleshoot are debug it the debugger allows you to look at the contents of registers and memory locations after your program runs. It allows you to change the contents of register and memory locations after your program runs. It allows you to change the contents of register and memory locations and return the program. A debugger also allows you to set a break point at any point in the program. If you inset a breakpoint the debugger will run the program up to the instruction where the breakpoint is set and stop execution. You can then examine register and memory contents to see whether the results are correct at that point. In MASM, the filename is used to debug the file.

Debugger Functions:

1. Debugger allows looking at the contents of registers and memory locations.

2. We can extend 8-bit register to 16-bit register which the help of extended register option.

3. Debugger allows setting breakpoints at any point with the program.

4. The debugger will run the program up to the instruction where the breakpoint is set and then stop execution of program. At this point, we can examine registry and memory contents at that point.

Commands to Execute a Given ALP:

1. ASSMEBLINIG

:
 masm <file name.asm> <Enter>

2. LINKING

:
link <file name.obj> <Enter>

3. DEBUGGING

:
debug <file name.exe> <Enter>

Debugger Commands

DUMP: To see the specified memory contents D memory location first address last address (While displays the set of values stored in the specified range, which is given above)

Eg: d 0100 0105 <cr>

Display the contents of memory locations from 100 to 105(including).

ENTER: To enter data into the specified memory locations(s).

E memory location data data data data data …<cr>

Eg: e 1200 10 20 30 40 ….

Enters the above values starting from memory locations 1200 to 1203, by loading 10 into 1200, 20 into 1201 and soon.

GO: To execute the program

G address <cr>: executes from current IP to the address specified

G first address last addresses <cr>: executes a set of instructions specified between the given addresses.

QUIT: To exit from the debugger.

Q <cr>

REGISTER: Shows the contents of Registers

R register name

Eg: r ax shows the contents of register.

TRACE: To trace the program instruction by instruction.

T = 0100 <cr>: traces only the current instruction. (Instruction specified by IP)

T = 0100 02 <cr>: Traces instructions from 100 to 101, here the second argument specifies the number of instructions to be traced.

UNASSEMBLE: To unassembled the program.

It shows the opcodes along with the assembly language program.

U 100 <cr>: unassembled 32 instructions starting from 100th location.

U 0100 0109 <cr>: unassembled the lines from 100 to 104

Introduction to the 8086 Trainer Kit & Instructions to User

Introduction:

ESA 86/88 –2 is a powerful, general-purpose microcomputer system, which can be operated either with 8086 CPU or with 8086CPU. It is generally supplied with 8086 CPU. To change it to 8088, user has to just remove the 8086, insert 8088 into that socket and set a DIP switch. The 8086 and 8088 are third generation CPU is from INTEL that differ primarily in their external data paths. 8088 uses and 8-bit wide data bus while 8086 uses a 16-bit wide bus.

ESA86/88-2 can be operated with either CPU and the only possible difference would be in the speed of execution (with 8088 CPU, a small speed degradation occurs because of the 8-bit wide data bus). In either case, the CPU is operated in the maximum mode.

Following are the system capabilities:

· Examine and optionally modify the contents of memory (byte or word format)

· Examine and optionally modify the processor registers.

· Assemble and Disassemble 8086/8088 instructions (via line assembler, disassembler).

· Perform fast numerical computations using the optional 8087 Numeric data processor.

· Execute the user program at full speed.

· Debug user program through single step and Breakpoint facilities.

· Write or read data to or from I/O ports (byte or word format).

· Move a block of data or program within the memory

· Download user programs into ESA 86/88-2 from a host computer system.

Specifications:

Central processor:

8086 CPU, operating at 8MHz in maximum mode. (Supplied with 8086 CPU). (Memory cycles have zero wait states and I/O cycles have one wait state).

Co-Processor

On-board 8087 Numeric Data processor (optional)

Memory

EPROM: 4 JEDEC compatible slots offer the following options:

 64K bytes using 27128s or,

 128K bytes using 27256s or,

 256K bytes using 27512s

(System firmware is supplied in 2x27256s. The other two sockets are for user expansion).

RAM: 4 JEDEC Compatible offer the following:

128K bytes using 6255s (64K bytes supplied using 2x62556s. The other two sockets are for user expansion). RAM has battery backup facility.
[image: image1.jpg]

figure: 8086 system kit
Peripherals and Controllers:

8251A: Programmable Communication Interface for serial communication upporting all standard from 110-19,200 (Baud is selected through on-board Dipswitch).

8253-5: (2 Nos.) programmable peripheral Interface devices provide 48 Progra-mmable I/O lines.

8259A: Programmable interrupt Controller provides interrupt vectors for 8 ources

8288: Bus controller used for generating control signals.

Interrupts:

External: NMI for INTR Keyboard.

INTR: Controlled through 8259A, on-board Interrupt Controller: provides interrupt vectors for eight sources. Complete flexibility in selecting off-board or on-board interrupt sources.

On-board interrupt sources:

8251 (TxRDY and RxRDY)

8253-5 (OUT1 and OUT2)

8255A (PC0 and PC3 in handshake mode)

8087 (NDP INT)

Internal: Interrupt vectors 1(single step) and 3 (breakpoint) reserved for monitor.

Interface Signals:

CPU Bus: Demultiplexed and fully buffered, TTL compatible, Address, Data & Control signals are available on two 50-pin ribbon cable connectors.

Parallel I/O: 48 Programmable parallel I/O lines (TTL compatible) through two 26 pin ribbon cable connectors. (Connector details compatible to our other microcomputer trainers).

Serial I/O: RS 232 C through on-board 9pin D-type female connector.

Power supply (optional): +5V @ 3.0Amp

Configuration and Installation

Configuration ESA 86/88-2:

ESA 86/88-2-microcomputer trainer is versatile and can be configured in a number of ways, as determined by the setting of a DIP switch and other jumpers. (Refer to the component layout diagram in appendix C to locate the DIP switch and the jumpers). This chapter describes all the configuration options and the installation procedures.

Operational mode selection

ESA 86/88-2 can be operated either in the serial mode or in Hexadecimal keypad mode. In the serial mode, the trainer is connected to a CRT terminal or to a host computer system (like PC compatible) through an RS 232 C interface. In the keypad mode, the trainer is operated through Hexadecimal keypad.

SW4 of the DIP switch

Operational mode

OFF

Serial mode

ON

Hexadecimal keypad mode*

(*Factory installed Option)

Printer Enable/Disable:

ESA 86/88-2 firmware includes the driver program fro centronics compatible parallel printer interface. This driver can be enabled/disabled as shown below

SW5 of the DIP Switch

Printer Driver

OFF

Disabled*

ON

Enabled

(*Factory installed Option)

Baud rate selection:

In the serial mode of operation, ESA 86/88-2 configures an 8251A USART as follows:

· Asynchronous mode

· 8-bit character length

· 2 stop bits

· No parity

· Baud rate factor of 16X

Timers 0 of an 8253 provide the Transmit and receive baud clocks for the USART. (Refer to chapter 5 for a detailed discussion of the Hardware).This timer is initialized by the system firmware to provide proper baud clock based on the settings of the DIP Switch as shown below.

DIP Switch

SW3

SW2

SW1

 Baud rate

OFF

OFF

ON

 9,600*

Memory selection:

ESA 86/88-2 has four sockets, labeled U9, U8, U7, U6 for RAM. These sockets are configured for 62256(32X 4) devices. Two of these sockets are populated (providing 64K Bytes of RAM) and two are for user expansion.

DEVICE

DIP SWITCH

JUMPER

SW7 SW6

27256

ON
 OFF

 JP10 – 1-2

Hexadecimal keypad Legend Interpretation:

	Hexadecimal
	Acronym
	Name
	Acronym
	Name

	0

EB/AX

1

ER/BX

2

GO/CX

3

ST/DX

4

IB/SP

5

OB/BP

6

MV/SI

7

EW/DI

8

IW/CS

9

OW/DS

A

/SS

B

/ES

C

/IP

D

/FL

E

F
	EB

ER

GO

ST

IB

OB

MV

EW

IW

OW

None

None

None

None

None

None
	Examine Byte

Examine Register

Go

Single Step

Input Byte

Output Byte

Move

Examine Word

Input word

Output Word

N/A

N/A

N/A

N/A

N/A

N/A
	AX

BX

CX

DX

SP

BP

SI

DI

CS

DS

SS

ES

IP

FL

None

none
	Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index

Destination index

Code Segment

Data Segment

Stack Segment

Extra Segment

Instruction Pointer

Flag Register

N/A

N/A

Summary of Monitor commands

	Command Group
	Command Function/Format

	Examine/modify

Input/Output

Execution

Block Move
	Examine Byte Displays/modifies memory byte locations

EB <address>,[[<data>] NEXT or PREV].

Examine word Displays/modifies memory word locations

EW <address>,[[<data>],]NEXT of PREV].

Examine Register Displays/modifies processor register contents

ER<reg key>[[<data>] NEXT] [.]

Input Byter Displays the data byte at the input port.

IB <port address> NEXT [NEXT].

Input word Displays the data word at the input port.

IW <port address> NEXT [NEXT].

Output byte outputs the data byte to the output port.

OB <port address>NEXT <data> [NEXT <data>]

Output word outputs the data word to the output port.

OW <port address>NEXT <data> [NEXT<data>].

Step Executes one single instruction.

ST [<Start address>NEXT [[<start address>] NEXT]

Go Transfers control from monitor to user program

GO [<address>] [NEXT<breakpoint address>].

Move Moves block of data within memory

MV <start address> NEXT <end address> NEXT <destinationaddress>.

Examine Byte and Examine Word Commands

Function: The Examine byte (EB) and Examine Word (EW) commands are used to examine thecontents of selected memory locations. If the memory location can be modified (e.g. a location inRAM), the contents optionally be modified.

Format:

EB <address> NEXT [[<data>] PREV/NEXT].

EW <address> NEXT [[<data>] PREV/NEXT].
Operation:

1. Both the commands operate in a similar fashion. To use these commands, press the EB key or EW key when prompted for a command.

2. When either key is pressed, a dot appears at the right edge of the address field indicating that an address entry is required.

3. Enter the memory address of the byte (for EB) of word (for EW) to be examined. (The entry of address values is discussed in detail in section 3.2)

4. After entering the address value, press the “,” key. (i.e. the NEXT key).

5. The data byte of word contents of the addressed memory location will be displayed in the data field and a decimal point (a dot) appears at the right edge of data field indicating that the data can be updated. Note that when using the Examine word command, the byte contents of the displayed updated memory location appear in the two least-significant digits of the field and the byte contents of the next consecutive memory location (i.e. entered memory address + 1) appears in the two most significant digits of the data field.

6. If the contents of the memory location addressed are only to be examined, press the ‘’.’’ Key to terminate the command, of press the ‘’,’’ (NEXT) key to examine the next consecutive memory location (Examine Byte Command) or the next two consecutive memory locations (Examine Word Command) or press the ‘’PREV’’ key to examine previous byte or word location.

7. To modify the contents of an addressed memory location, enter the new data from the hexadecimal keyboard (entering the data values is discussed in detail in section 3.2).

8. The data displayed is not updated in memory until either the ‘’,’’ or ‘’.’’ Key is pressed.

Examine Byte and Examine Word Commands

Function: The Examine Byte (EB) and Examine Word (EW) commands are used to examine the contents of selected memory locations. If the memory location can be modified (e.g. a location in RAM), the contents optionally be modified.

Format:

EB <address> NEXT [[<data>] PREV/NEXT].

EW <address> NEXT [[<data>] PREV/NEXT].

Examine Register Command

Function: The Examine Register (ER) command is used to examine and optionally modify the contents of nay of the 8086/8088’s registers.

Format:

 ER <reg key> [[<data>],] [.]

Input/Output Commands:

There are 4 commands available for Input/Output of Byte/Word data form/to a specified port. Inentering the port address (in any of these four commands), it should be noted that 8086/8088 I/Oaddressing is limited to 64K (maximum address is FFFFH). Thus no segment value is permitted withthe port address.

Input Byte and Input Word Commands:

Function: The Input Byte (IB) and Input Word (IW) commands are used to input (accept) an 8-bit byte or 16-bit word from an input port.
Format:

IB <port address >, [,].

IW <port address>, [,].

Step Command:

Function: This command is used for single step execution of a program. In other words, this step (ST) command permits program instructions in memory to be executed individually. With each instruction executed, control is returned to the monitor from the program being executed,

Format:

ST [< start address>], [[<start address>,.

Go Command:

Function: The GO command is used to transfer control of the 8086/8088 from the keyboard monitor program to user’s program.

Format:

GO [<address>] [, <breakpoint address>]

Move Command:

Function: This command (MV) can be used to move a block of data from one portion of the memory to another potion of the memory.

Format:

MV <Start address> NEXT <end address> NEXT <destination address>.

PAGE
5

